Tetrahedron Letters Vol. 21, pp 4917 - 4920 @Pergamon Press Ltd. 1980. Printed in Great Britain 0040-4039/80/1215-4917802.00/0

ELECTRONIC NATURE OF THE AZA SUBSTITUENT OF PYRIDYL AND QUINOLYL GROUPS FOR REACTIVITIES IN AN INSULATED SYSTEM¹⁾

Masami SAWADA,* Masaharu ICHIHARA, Takashi ANDO, Yasuhide YUKAWA The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan Yuho TSUNO* Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Fukuoka 812, Japan

abstract: A new set of $\sigma^{\mathbf{O}}$ values was determined for all positions of pyridyl and quinolyl groups, reliably excluding steric effect by perihydrogen, on the basis of the rates of the alkaline hydrolysis of substituted 2-methylbenzoates and pyridylmethyl and quinolylmethyl 2-methylbenzoates in 70% aq acetone.

Nitrogens in N-containing heteroaromatics and their onium ions can affect organic and bioorganic reactivities quite importantly. One of the fundamenta points needing quantitative clarification is that of intramolecular effects of neutral mono-nitrogen in N-heteroaromatics such as pyridine and quinoline.²⁾ Attempts to evaluate such electronic effects have been made by using various reactions such as pyrolysis of 1-(quinolyl)ethyl acetates³⁾ and hydrolysis of methyl quinolinecarboxylates⁴) among others.⁵⁾ These attempts, however, involve considerable uncertainties due to small ρ values, $3,6$) peculiarity of solvent-free conditions, 3) complications by steric effects of peri-hydrogen, 4) and tautomerism.⁵⁾

We wish to report here that a set of σ^0 -type reactivities for pyridyl and quinolyl groups derived from the alkaline hydrolysis of arylmethyl 2-methylbenzoates (I) in 70% (V/V) aqueous acetone at 25 $^{\circ}$ C $^{7)}$ allows the desired electronic effects to be analysed in detail. The system possesses intrinsic advantages in that (i) the reaction center (C=O) is insulated far from the aryl group by a methylene and an oxygen, which brings about negligible

contribution of steric effects by peri-hydrogen $(\sigma_{\text{1-naph}}^{\text{O}} \tilde{\sigma}_{\text{2-naph}}^{\text{O}})$, $^{8)}$ and (ii) nevertheless, the ρ value is large enough to evaluate a new set of $\sigma^{\small\mathtt{C}}$ constants within the usual limits of precision $(\rho_m^2=1.0)$.⁹⁾ The methyl group at the ortho position of the benzoate moiety acts to reduce the hydrolysis rates by a factor of about ten and allows one to follow the rates for electron attracting pyridyl and quinolyl derivatives by ordinary titration methods.

Table 1 shows the second order rate constants and the σ^{O} values calculated from the rates relative to the rate for benzyl 2-methylbenzoate (Ph) by using $\rho_{\sf m}$ =0.989 determined from meta and para substituents (n=4). These $\sigma^{\sf v}$ values agree well with those reported by Deady and Shanks for the pyridyl group, $^{10)}$ but disagree with Taylor's for the quinolyl group, 3) especially at the B ring positions. The present order of σ^{O} values in the quinoline series is 4Q>2Q>3Q>SQ>7Q=6Q>8Q>Ph; in the first three groups, the sequence and the relative magnitudes are nearly equal to those in the pyridine series obtained (4P>2P>3P>Ph). All positions in the pyridyl and quinolyl groups have considerable electron attracting character, as expected from the electronic effects of nitrogen located in the parent ring.

Aryl	10^{3} k ₂ (s ⁻¹ M ⁻¹)	σ ^{o a)}	σ b)	\mathbf{c} σ^{O} corr
Phenyl (Ph)	0.886 ± 0.019	0.00	0.00	
4-Chlorophenyl	1.72 ± 0.01	0.29	0.28	
3-Chlorophenyl	2.07 ± 0.05	0.37	0.37	
3-Nitrophenyl	4.47 ± 0.10	0.71	0.71	
2 -Pyridyl (2P)	5.06 ± 0.09	0.76		
3 -Pyridyl $(3P)$	4.58 ± 0.09	0.72		
4 -Pyridyl $(4P)$	7.58 ± 0.07	0.94		
1-Naphthyl			0.05	
2-Naphthyl			0.06	
2 -Quinolyl $(2Q)$	5.97 ± 0.03	0.84		0.78
3 -Quinolyl $(3Q)$	5.10 ± 0.11	0.77		0.71
4 -Quinolyl $(4Q)$	6.46 ± 0.05	0.89		0.84
$5 -$ Quinolyl $(5Q)$	3.11 ± 0.05	0.55		0.50
6 -Quinolyl $(6Q)$	2.30 ± 0.02	0.42		0.36
7-Quinolyl (70)	2.55 ± 0.04	0.46		0.40
8 -Quinolyl $(8Q)$	1.25 ± 0.02	0.15		0.10
		\sim \sim \sim	\circ \circ	\circ

Table 1. The Rate Constants and the σ^{\vee} Values from the Alkaline Hydrolysis of Arylmethyl 2-Methylbenzoates (70% aq acetone, 25O)

a) Derived by $(k_x/k_{ph})/0.989$. b) Taken from Refs. 8 and 9b. c) $\sigma_{\text{corr}}^0 = \sigma_{\text{quino}}^0 - \sigma_{\text{1}}^0$ or 2-naph

By analogy with substituent effects in the naphthalene system, $^{11,12)}$ the $\sigma_{\mathtt{corr}}^{\mathtt{O}}$ values, derived by subtracting $\sigma_{\mathtt{C}}^{\mathtt{O}}$ for the corresponding parent hydrocarbon from the σ^0 for the quinoline system, must represent electronic effects of the aza substituent. The σ_{corr}^0 values may be compared with some physical quantities, but could not be simply accounted for in terms of, for example, pi-charge differences calculated with the CNDO/2 MO method by Bloor and others a vailable. $^{13)}$

Recently, we have noted that the contribution of the inductive effect of substituents in the naphthyl system is correlated fairly well by Dewar's function of $1/r$, possibly indicating a field effect.¹²⁾ Actually, the present aza effects can be interpreted to some extent with such a simplified function, where r is a distance between the carbon at which the reacting side-chain is attached and the nitrogen. We note the marked deviations of 4Q and 4P in the plot of σ_{corr} vs $1/r$, suggesting the importance of another pi-electronic (attracting) effect in such conjugated positions; 14 , the 2Q, 2P, and 8Q are out of considerations, because the N-C distance is too short to apply the simple $1/r$ approximation and the effect of conformational preference may be involved.

The comparison of the σ_{corr}^0 of quinolyl groups with the apparent $\bar{\sigma}_{\text{corr}}$ values derived from ΔpK_A for the dissociation of 1-nitronaphthalenecarboxylic acids and 1-cyanonaphthalenecarboxylic acids in 50% aq EtOH $^{15)}$ is very instructive (Chart 1), where $p=1.38$ for 1-naphthalenecarboxylic acid series^{12b)} and p=1.51 for 2-naphthalenecarboxylic acid series^{12a)} are employed for cal _{calculation.} $12c$)

The $NO₂$ group in 1-nitronaphthyl derivatives is twisted out of the plane of the ring, and must have a reduced pi-electronic ability compared with a normal untwisted NO₂ group ($\sigma_i=0.46$, $\sigma_{\pi}^-=0.33)$.¹⁶⁾ The overall figures in Chart 1 are explicable in terms of the following characters of inductive(σ_i) and pielectronic (σ_{π}) effect for the aza substituent as a kind of a modified NO₂ in the naphthalene r ing. 17)

 $\sigma_{i, \text{aza}}$ \rightarrow $\sigma_{i, \text{NO}_{2}}$ \approx $\sigma_{i, \text{CN}} (0.42)^{2.5}$ $\sigma_{\pi,\texttt{aza}}^-$ < $\sigma_{\pi,\texttt{NO}_2}^-$ (twisted) $\sigma_{\pi,\texttt{CN}}^-(0.23)^{10}$

The large aza inductive ability may arise from the near location of N and the small pi-electronic ability may be understood in terms of the absence of an effective route by which accumulated electron density on N can be dispersed to outside unsaturated bonds as for NO₂. These are supported by the numerical values of σ (=0.94) and $\Delta \sigma_{_{\rm I\!P}}$ (=0.19) for the 4-pyridyl group $^{2.7}$ derived from the LArSR approach, 9b, 18) independently.

References and Notes

- 1) Reactivities of Nitrogen-containing Heteroaromatics. 3. For part 2, M. Sawada, Y. Yukawa, Y. Tsuno, and T. Nakachi, an accompanying paper.
- 2) For example, P. Tomasik and C. D. Johnson, "Advances in Heterocyclic Chemistry", 20, l(1976).
- 3) R. Taylor, *J. Chem. Sot., B,* 1971, 2382.
- 4) R. C. Elderfield and M. Siegel, *J. Am. Chem. Sot.,* 73, 5622(1951).
- 5) For example, H. H. Jaffe and H. L. Jones, "Advances in Heterocyclic Chemistry", 3, 256(1964).
- 6) R. Taylor, G. G. Smith, and W. H. Wetzel, *J. Am. Chem. Sot., 84,* 4817(1962).
- 7) Initial concentration of equimolar alkali and ester was employed throughout the studies (ca. $0.02 M^{-1}$).
- 8) M. Sawada, Y. Tsuno, and Y. Yukawa, *Bull. Chem. Sot. Jpn., 45, 1206(1972).*
- 9) a) Y. Yukawa, Y. Tsuno, and M. Sawada, *BUZZ. Chem. Sot. Jpn., 45, 1198* (1972); b) *ibid.*, 39, 2274(1966).
- 10) L. W. Deady and R. A. Shanks, *Aust. J. Chem., 25, 2363(1972).*
- 11) P. R. Wells and R. W. Taft, I' progress in **Physical** Grganic Chenistry", 6, 147(1968).
- 12) a) Y. Tsuno, M. Sawada, T. Fujii, and Y. Yukawa, *Bull. Chem. Sot.* Jpn., 48, 3347(1975); b) $ibid.$, 48, 3356(1975); c) $ibid.$, 52, 3033(1979).
- 13) J. E. Bloor and D. L. Breen, *J. Am. Chem. Sot., 89, 6835(1967);* G. L. Gleicher, *Tetrahedron, 33,* 1921(1977).
- 14) An attempt of simplified Kirkwood-Westheimer treatment containing a function of $cos\theta/R^2$ was not successful, especially in the 7Q case.
- 15) Data taken from Ref. 11, p. 187.
- 16) Y. Tsuno, M. Fujio, and Y. Yukawa, *Bull. Chem. Sot. Jpn., 48, 3324(1975).*
- 17) These sequences were evaluated from the relative magnitude of C_i and C_{π} values derived by using the statistical method for the three sets: $\sigma = (1/r)C_i + (\Delta q)C_{\pi}$ and $\sigma = \rho_i C_i + \rho_{\pi} C_{\pi}$. As a scale of transmission efficiency of pi-electronic effect, Forsyth's charge difference value $(\Delta q)^{20}$ were attempted to be employed in the former, although such Aq's at conjugated positions were considered to be overestimated in the present system. While, in the latter, ρ_i and ρ_{π} values were taken from the transmission coefficients for the basicities of substituted quinolines by means of the LSFE analysis.¹⁾ 18) a) Y. Tsuno et. al., *Bull. Chem. Sot. Jpn., 45,* 1519(1972); b) 48, 3337(1975).
- 19) M. Sawada, Y. Tsuno, et. al., to be published.
- 20) D. A. Forsyth, R. J. Spear, and G. A. Olah, *J. Am. Chem. Sot., 98, 2512(1976).*

(Received in Japan 30 August 1980)